Appl. Phys. 3, 299—305 (1974) © by Springer-Verlag 1974

OCT 21 1974

# Hydrostatic Pressure-Forced Phase Transition from Ferroelectric to Antiferroelectric in Compositions of the PbZr<sub>1-x</sub>Ti<sub>x</sub>O<sub>3</sub> + 0.8 % WO<sub>3</sub> Type

Paul Gonnard\*, François Bauer\*\*, Michel Troccaz\*, Yves Fetiveau\*, and Lucien Eyraud\*

Received 17 July 1973 / Revised 12 December 1973

**Abstract.** Hydrostatic pressure acting on doped lead titanate-zirconate materials with a considerable proportion of zirconium induces a phase transition between ferroelectric and antiferroelectric states, which causes the previously poled specimens to depolarize. Measurements using a capacitance and those made on short-circuited specimens allow us to draw phase diagrams of the following types: "pressure-electric field" and "pressure-composition". A thermodynamic investigation of the phenomenon permits us to define new characteristic coefficients for this type of depolarization.

Index Headings: Phase transition – Ferro- and antiferro-electricity

Solid solutions suitable for irreversible conversion from mechanical to electric energy take advantage of an hydrostatic-pressure enforced transition from ferroelectric to antiferroelectric ( $F \rightarrow AF$ ).

The diagram in Fig. 1 shows the following transitions for increasing temperature:

(a) and (c) 
$$AF_A \rightarrow F_B$$

(b)

 $\begin{array}{c} \operatorname{AF}_{A} \to \operatorname{F}_{B} \\ \operatorname{AF}_{A} \to \operatorname{AF}_{B} \\ \operatorname{F}_{A} \to \operatorname{F}_{B} \end{array} \right\} \quad \text{determined from DTA and} \\ \text{permittivity plots.} \\ \operatorname{AF}_{B} \to \operatorname{F}_{B} \\ \operatorname{AF}_{A} \to \operatorname{F}_{A} \end{array} \right\} \quad (\text{dotted line) determined from} \\ \text{hysteresis loops at low frequency [1].}$ 

In the case of x approaching 0.05-0.07 the F and

AF states are fairly close at room temperature. It should be born in mind that for all compositions

of the perovskite type [2]: the electric field acts to extend the range of stability of the ferroelectric state; and the compressive stress acts to extend the range of stability of the antiferroelectric state.

<sup>\*\*</sup> Institut Franco-Allemand de Recherches de Saint-Louis, F-68300 Saint-Louis, France.

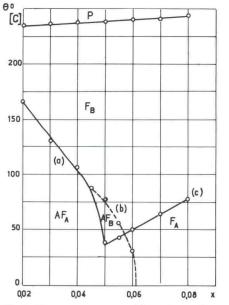
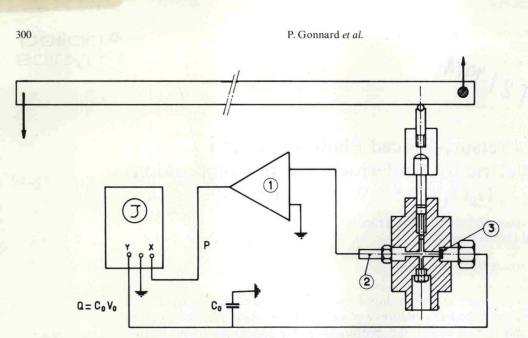




Fig. 1. Temperature-composition phase diagram for  $PbZr_{1-x}$ Ti<sub>x</sub>O<sub>3</sub> + 0.8% WO<sub>3</sub> with x variable, temperature increasing

In the case of a transition occurring between ferroelectric and antiferroelectric states the most important and most easily noticeable modification is

<sup>\*</sup> Laboratoire de Ferroelectricité Département de Genie Electrique Institut National des Sciences Appliquées, F-69621 Villeurbanne, France.





the loss in remanent polarization of poled specimens [3].

## 1. Experimental Methods

GONN-P 74-0186

## **Experimental** Arrangement

Figure 2 exhibits the experimental arrangement used to induce a hydrostatic compression of the ferroelectric ceramics under investigation. The principle of the device is straightforward: a leverarm acts on the primary piston of a high-pressure chamber and allows to reach hydrostatic pressures of the order of 6-7 kbar [4].

# Measurements Made on Short-Circuited Specimens (Fig. 3)

A capacitor  $(1300 \,\mu\text{F})$  is connected to the terminals of the specimen. The Voltage  $V_0$  measured by an oscillograph or a high input-impedance recorder does not exceed a few millivolts. The very high time constant given by the capacitor and the impedance of the measuring apparatus allows either isothermal cycles or "quasi-adiabatic" cycles to be performed within a few hundreds of msec. The cycle is drawn by recording the voltage at the terminals of the capacitance as a function of the pressure. This cycle allows to determine the transition pressure as well as the charges liberated from the ceramic.

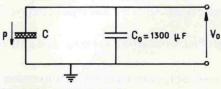



Fig. 3. Measurement circuit

# Measurements Made on High Impedance Capacitive Load

A capacitance  $C_1$  of good quality and low value (200 up to 4000 pF) is connected to the terminals of the ceramic. The capacitance  $C_0$  (1300  $\mu$ F) connected in series within the circuit allows to determine the charge transfers as well as the value of the potential difference at the terminals of the specimen, i.e.

$$V = V_0 \ \frac{C_0 + C_1}{C_1} \approx \ V_0 \ \frac{C_0}{C_1}.$$

## Preparation of the Specimens

The specimens (diameter: 5 mm, thickness: 1 mm) are covered with a conducting varnish and poled at room temperature under the influence of a 4000 V/mm field. The specimens containing less than 5% titanium are poled when hot ( $100^{\circ}$  C), they cooled under the influence of the field.